
Splices, Connectors, and Fiber Optic Components

© John P. Powers, 1999, 2000 Splice-1

Splices, Connectors, and Fiber Optic Components

- Fiber cable lengths are limited
- How do we join fibers?
 - -Splices
 - -Connectors
- Can we divide the power in a fiber?
 - Ex., 1 fiber in; 2 fibers out
- How can we isolate a laser source from back reflections?
- Can we make optical filters out of fibers (i.e., ready to splice into fiber links)?

Fiber Joints

Joints

- -Interconnect fiber lengths
 - Available up to few kilometers
- -Connect source/detector pigtails to fiber
- -Pass through bulkheads, walls, etc.
- Want...
 - -Low insertion loss
 - -High strength
 - -Simple installation
- Two types of joints
 - -Splice: permanent joint
 - Connector: temporary joint

Connectors and Splices: Joining Losses

- Causes of loss
 - -Intrinsic losses: Depend on fiber properties
 - Extrinsic losses: Losses due to external factors (e.g., fiber misalignment)
 - -In general, not same in both directions
- (Transmission) joint loss [dB]

$$L_{j}[dB] = -10\log(P_{\text{out}}/P_{\text{in}}) = -10\log(\eta)$$

– η is "coupling efficiency"

Fiber Parameter Effects: Multimode Fibers

- Coupled optical power depends on number of modes in each fiber
 - -Number of modes:

$$N = k^{2} \int_{0}^{a} NA^{2}(r) r dr = k^{2} NA^{2}(0) \int_{0}^{a} \left[1 - (r/a)^{g} \right] r dr$$

- -Optimum coupling when number of modes is matched
- -Loss factors
 - »Core radius a, numerical aperture NA(0), index gradient g
- -Isolate effects as if independent and add dB losses
- Losses also depend on mode power distribution
 - -Assume uniform distribution
 - Reality: uneven distribution due to launch conditions or mode coupling effects
 - -Measurements need to be made with all modes equally excited

Fiber Parameter Effects: Multimode Fibers (cont.)

- Effects of joining mismatched fibers
 - 1. NA effects:

$$L_{NA}[dB] = \begin{cases} -10\log\left(\frac{NA_{r}(0)}{NA_{e}(0)}\right)^{2} & NA_{r}(0) < NA_{e}(0) \\ 0 & NA_{r}(0) > NA_{e}(0) \end{cases}$$

NA_r(0) [NA_e(0)] is NA of receiving [emitting] fiber

2. Fiber radius effects:

$$L_r[dB] = \begin{cases} -10\log\left(\frac{a_r}{a_e}\right)^2 & a_r < a_e \\ 0 & a_r > a_e \end{cases}$$

3. Index profile effects:

$$L_g = \begin{cases} -10\log\left(\frac{g_r(g_e + 2)}{g_e(g_r + 2)}\right) & g_r < g_e \\ 0 & g_r > g_e \end{cases}$$

Combined effects:

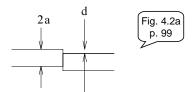
$$L_{\text{Total}}(\text{dB}) = L_{\text{NA}} + L_r + L_g$$

Splice-6

• E.g., Coupling 50/125 SI (emitting) fiber with NA of 0.15 to 62.5/125 GI (g = 2) receiving fiber with NA =0.20 gives η = 0.5 (3 dB)

Fiber Parameter Effects: Multimode Fibers (cont.)

- Loss is also function of...
 - -Quality control of fiber fabrication
 - » Ellipticity of core
 - » Variations in *n(r)*
 - » Core concentricity within cladding
 - » Variation in core diameter
 - » Other factors that depend on fabrication tolerances
 - -Dominant effects: core diameter and NA
 - -Lesser effect: core ellipticity and n(r)
- User has little control over these factors
 - -Specify tolerances
 - -Establish acceptance screening procedures


Splices and Connectors: Misalignment Effects

• Extrinsic effects

- Under control of connector/splice designer and user
- Primarily due to misalignment of fibers
- Determine required mechanical tolerances to meet given loss allocation
- In analysis of misalignments, usual assumptions are...
 - Fibers have equal radii, index profiles, and NAs to isolate misalignment effects
 - Power is uniform distribution across core area

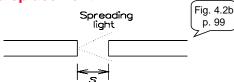
Connectors and Splices: Lateral Displacement Effects

• Losses due to lateral fiber offset

SI fiber:

$$L_{\text{SI lateral}} = -10\log\left(\frac{2}{\pi}\cos^{-1}\left(\frac{d}{2a}\right) - \frac{d}{\pi a}\sqrt{1 - \left(\frac{d}{2a}\right)^2}\right)$$

(Calculation of overlapping circular areas, centers separated by d)


• GI fiber:

$$L_{\text{GI lateral}} \left[\text{dB} \right] \approx -10 \log \left(1 - \frac{8d}{3\pi a} \right) \text{ or}$$

$$L_{\text{GI lateral}} \left[\text{dB} \right] \approx -10 \log \left(1 - \left(\frac{2d}{\pi a} \right) \left(\frac{g+2}{g+1} \right) \right)$$

Connectors and Splices: Longitudinal Displacement Effects

 Losses due to longitudinal displacement

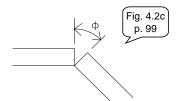
• Some light has spread beyond the area of receiving fiber core

• SI fiber:

$$L_{\text{SI long}} \left[\text{dB} \right] = -10 \log \left(\frac{1}{1 + \frac{s}{a} \tan \theta_{\text{max}}} \right)^{2} \right)$$

$$= -20 \log \left(\frac{1}{1 + \frac{s}{a} \tan \theta_{\text{max}}} \right)$$

(θ_{max} : maximum acceptance angle = \sin^{-1} NA)


Or

$$L_{\text{SI long}} \left[\text{dB} \right] \approx -10 \log \left(1 - \frac{s\sqrt{2\Delta}}{4a} \right)$$

• GI fiber: No similar formula available (?)

Connectors and Splices: Angular Misalignment

• Losses due to angular misalignment

• GI and SI fiber:

$$L_{\text{MM angular}} \left[\text{dB} \right] \approx -10 \log \left(\left(1 + \frac{\sin \phi}{\sqrt{2\pi\Delta}} \left(\frac{\Gamma\left(\frac{2}{g} + 2\right)}{\Gamma\left(\frac{2}{g} + \frac{3}{2}\right)} \right) \right)^{-1} \right) = +10 \log \left(1 + \frac{\sin \phi}{\sqrt{2\pi\Delta}} \left(\frac{\Gamma\left(\frac{2}{g} + 2\right)}{\Gamma\left(\frac{2}{g} + \frac{3}{2}\right)} \right) \right)$$

$\Gamma(x)$ is Gamma function

$$\begin{split} & L_{\text{MM SI angular}} \left[\text{dB} \right] \approx -10 \log \left(\cos \phi \left\{ \frac{1}{2} - \frac{1}{\pi} p \sqrt{1 - p^2} - \frac{1}{\pi} \sin^{-1} p - q \left[\frac{1}{\pi} y \sqrt{1 - y^2} + \frac{1}{\pi} \sin^{-1} y + \frac{1}{2} \right] \right\} \right) \\ & p = \frac{\cos \theta_{\text{max}} \left(1 - \cos \phi \right)}{\sin \theta_{\text{max}} \sin \phi}, \quad q = \frac{\cos^3 \theta_{\text{max}}}{\left(\cos^2 \theta_{\text{max}} - \sin^2 \phi \right)^{3/2}}, \quad y = \frac{\cos^2 \theta_{\text{max}} \left(1 - \cos \phi \right) - \sin^2 \phi}{\sin \theta_{\text{max}} \cos \theta_{\text{max}} \sin \phi} \end{split}$$

Splices and Connectors: Reflection Losses

- (Fresnel) reflection loss
 - -Coupling efficiency at perpendicular interface is

$$L_{\text{reflection}} \left[\text{dB} \right] = -10 \log \left(\frac{P_{\text{transmitted}}}{P_{\text{incident}}} \right) = -10 \log \left(1 - \left(\frac{n - n_0}{n + n_0} \right)^2 \right)$$

- -Reflection losses same regardless of direction of travel
- -Losses at air-glass interface: 0.2 dB each fiber face
- -Eliminate by...
 - » Use of index-matching gel or epoxy between fiber ends
 - » Physical contact of fiber ends ("PC" connection)
 - » Angled fiber ends (~8°)
 - » Using optical isolators
- Return loss

$$L_{\text{return}} \text{ [dB]} = -10 \log \underbrace{\left(\frac{P_{\text{reflected}}}{P_{\text{incident}}}\right)}_{\text{R eflectivity}}$$

Total Losses in MM Fiber

• Total loss in multimode fiber is sum of all 7 losses...

$$L_{\text{intrinsic}} = L_{\text{NA}} + L_{\text{r}} + L_{\text{g}}$$

$$L_{\rm extrinsic} = L_{\rm lateral} + L_{\rm logitudinal} + L_{\rm angular}$$

$$\begin{split} L_{\text{MM Total}} \left[\text{dB} \right] &= L_{\text{intrinsic}} \left[\text{dB} \right] + L_{\text{extrinsic}} \left[\text{dB} \right] + L_{\text{reflection}} \left[\text{dB} \right] \\ &= L_{\text{NA}} \left[\text{dB} \right] + L_{\text{r}} \left[\text{dB} \right] + L_{\text{g}} \left[\text{dB} \right] + L_{\text{lateral}} \left[\text{dB} \right] \\ &+ L_{\text{logitudinal}} \left[\text{dB} \right] + L_{\text{angular}} \left[\text{dB} \right] + L_{\text{reflection}} \left[\text{dB} \right] \end{split}$$

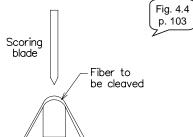
Connectors and Splices: Single-Mode Fibers

- Mode field diameter (MFD) determines sensitivity to misalignment
- Coupling efficiency for two single-mode fibers
 - MFDs of W_e (emitting fiber) and W_r (receiving fiber)
 - -Lateral offset d, longitudinal offset s, and angular misalignment θ

$$L_{\text{Total SM}} \text{ [dB]} = -10 \log \left(\underbrace{\frac{16n_1^2n_3^2}{(n_1 + n_3)^4} \frac{4\sigma}{q} e^{\frac{-\rho u}{q}}}_{\text{reflection}} \right)$$

 n_1 is refractive index of fiber cores (same for both fibers) n_3 is refractive index of gap medium between fibers

$$\sigma = \left(\frac{W_r}{W_e}\right)^2, \quad k = \frac{2\pi \ n_3}{\lambda}, \quad \rho = \left(kW_e\right)^2,$$

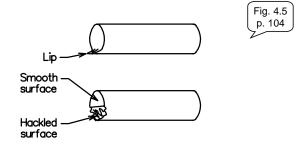

$$F = \frac{d}{kW_e^2}, \quad G = \frac{s}{kW_e^2}, \quad q = G^2 + \left(\sigma + 1\right)^2, \text{ and}$$

$$u = (\sigma + 1)F^2 + 2\sigma FG \sin\theta + \sigma \left(G^2 + \sigma + 1\right)\sin^2\theta$$

Splices and Connectors: Fiber End Preparation

- Pits or imperfections scatter light
- End preparation techniques
 - 1. Grinding and polishing technique
 - » Polish fiber end by hand or machine
 - » Uses progressively finer abrasives
 - » Labor and time-intensive

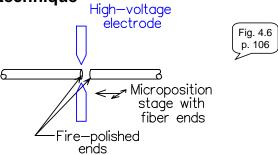
- 2. Score-and-break technique (cleaving fiber ends)
 - »Fiber under mild tension and scribed



- »Tension increased and crack tip propagates across fiber
- »If fiber curvature and tension are carefully controlled,
 - Crack propagates perpendicular to fiber axis and...
 - Creates clean, smooth break

- Expressions for coupling loss all assume that fiber end is perfect transmitter
- End faces should be parallel to each other (often perpendicular to fiber axis)

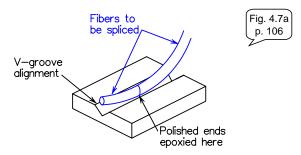
Splices and Connectors: Fiber End Preparation (cont.)


• Improper surfaces can have lip or hackle

- Microscope inspection of fiber end necessary for end inspection
- Tools commercially available
- Takes little time for experienced user

Splices: 1. Fusion Splicing

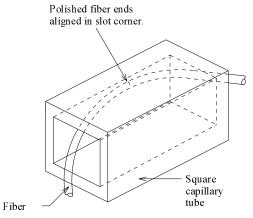
Most popular splice technique



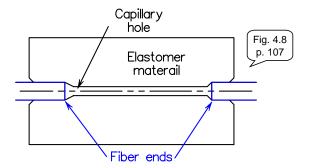
- Micro-manipulators bring prepared ends into close alignment (can be automated)
- -Ends heated with electric arc until molten; pushed together
- -Joint cools, surface tension pulls fibers into alignment
- Losses: ~ few tenths of a dB
- Primary problem
 - -Reduced fiber strength near joint (about 60% of initial strength)
 - »Use high-strength wrapping around spliced region

- Strength reduction due to
 - * Development of surface microcracks during handling and
 - * Chemical changes in glass due to heating

Splices: 2. V-groove splice


- V-shaped groove as alignment aid: mechanical alignment
- Apply epoxy or cover plate

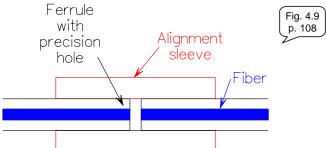
- Grooves in plastic, silicon, ceramic, or metals
- Uses outside surface of fiber as reference
 - Susceptible to variations in core ellipticity, concentricity, and size
 - Unequal diameters cannot be spliced
- Fiber ends require preparation before splicing
- Losses: few tenths of a dB


Splice-18

 Variation on this technique, called loose-tube splice, uses corner of a rectangular tube as the alignment aid

Splices: 3. Elastic Material Splicing

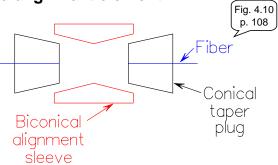
• Uses elastic material to center fibers


- Self-centering
 - -Restoring forces center fiber (with respect to outside surface)
 - -Unequal diameters can be aligned
- Fiber ends prepared before insertion
- Drop of epoxy on fiber ends forms splice
- Losses: few tenths of a dB

Connectors

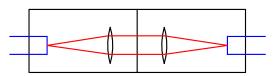
- Allow disconnection and reconnection
- Goal: low insertion-loss connector with reproducible losses
- Most connector designs incorporate fiber into precision alignment aid
 - -Aid then plugs into receptacle in connecting piece
- Various environmental factors:
 - -Dust levels
 - -Pressure differentials
 - -Water vapor and water

Connectors: Ferrule-Based Connectors


- Ferrule: precision-drilled hole in cylinder (fiber fits inside hole)
- Ferrule fits in *alignment sleeve* to bring the fiber ends into alignment

- Main problems:
 - -Centering fiber hole in ferrule
 - -Dimensional tolerance on ferrule hole (e.g., 126 \pm 1 μ m)
 - -Centering ferrule hole in alignment sleeve
 - -Making hole slightly larger than fiber
- Alignment sleeves commonly made of aluminum, stainless steel, or ceramics

Connectors: Biconic Plug

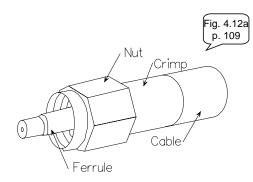

• Injection-mold alignment element

- Shape is "biconical taper"
- Designed to mate with housing such that fiber/plug assembly is self-centering
- AT&T patented
- Seldom used in new installations

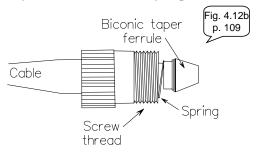
Connectors: Expanded Beam Connector

- Microlens inserted at fiber end to collimate beam
 - Expanded beam has less beam divergence

- Receiving fiber has similar collimator
- Expanded beam reduces requirements on lateral & longitudinal alignments
 - Penalty of increasing required angular alignment
- Lenses:
 - -Microlens
 - -Gradient-index lenses
 - -Mounted into alignment fixture
- Fiber ends prepared prior to insertion
- · Losses: few tenths of a dB


- Gradient-index lens
 - \blacksquare Piece of glass with parabolic variation in n(r)
 - Behaves as a lens but has flat surfaces
 - Also called GRIN lens

Connectors: Commercial Connectors


- Several connector popular types
- Few standards for connectors
- Patent and proprietary rights
 - -Frequently "second-sourced" or cross-licensed
- Typical insertion losses for connectors in the field
 - -Few tenths of a dB to a few dB

Commercial Connectors: SMA & Biconic Connectors

- SMA connector (left)
 - Borrowed from RF field
 - Formerly popular connector for multimode fibers
 - Ferrule-type connector

- Biconic connector (right)
 - Developed by AT&T
 - Wide use in older single-mode systems
 - Supplanted by ST connector
 - Uses molded and ground plastic or ceramic plug

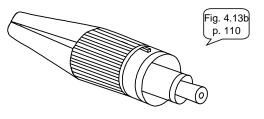
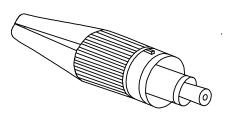
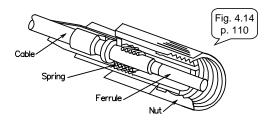

Commercial Connectors: ST & FC Connectors

Fig. 4.13a

- ST connector (left)
 - Registered trade-mark (AT&T)
 - Widely used in single-mode systems
 - Also available for multimode systems
 - Features spring-loaded bayonet clip
 - Both score-and-break and grindand-polish methods used to prepare fiber ends
 - Fairly easy to terminate

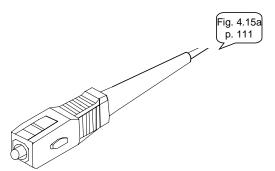

- FC connector (right)
 - Developed by NTT (Nippon Telephone and Telegraph)
 - Single-mode fibers
 - D3 connector is NEC (Nippon Electronics Corporation) clone of FC connector
 - Spring-loaded connector with screw-on nut
 - Metal ferrule aligns fiber

Commercial Connectors: FC/PC & D4 Connectors

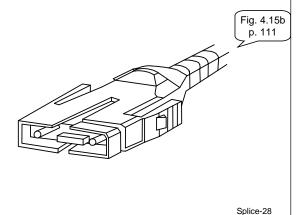

• FC/PC connector

- Offshoot of FC connector
- Pure ceramic ferrule
 Increased alignment
 accuracy over metal/ceramic
 ferrule in FC
- Physical contact to minimize reflections
- Primarily used for long-haul and research instruments

• D4 connector


- Designed by NEC
- Similar to D3 connector, but smaller

Commercial Connectors: FDDI Connectors


SC connector

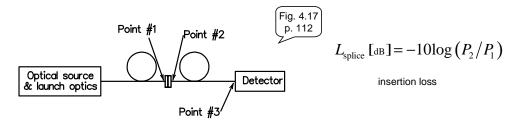
- Plastic-case connector
- Push-pull configuration
- Ceramic ferrule
- Increasingly popular in networks

• FDDI connector

- Dual-fiber connector
- FDDI standard
- Use in FDDI data links
- Used for attachment to stations on link

Miniature RJ and MU Connectors

- New connectors
- Network applications
- Compatible with network wall plugs
- Small "footprint"
- RJ (left)
- SC vs MU (right)



ST-Connector Spec Sheets

- ST Connector specs
- See course Website

Splice and Connector: Loss Measurement

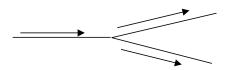
- Measured losses depend on many variables
 - -Optical power launch conditions
 - »Excite all modes in MM fiber
 - Use long pigtail
 - Equilibrium mode simulator: short fiber wrapped in serpentine path
 - -Source type
 - -Characteristics of fiber on either side of joint
- Experimental setup
 - -Measure power P_1 and P_2 at the input and output of connector

- Losses measured are very susceptible to mode excitation
 - Equal mode excitation desired
 - - * Long fiber before connector/splice
 - * Shorter fiber wrapped in serpentine path
- Multimode fibers can introduce loss effects
 - Due to mode coupling and connector/splice effects

Couplers

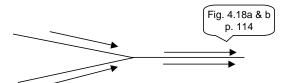
- Couplers
 - -Split power into two or more fibers
 - -Combine optical power
 - -Split light according to polarization
 - -Optical switches: switch light between output fibers
- Usually each output equally shares signal
 - -Possible to vary coupling fraction
- Losses
 - -Splitting loss: $L_{\text{Splitting}} [dB] = -10 \log (1/N) = +10 \log (N)$
 - Excess losses: extra losses
 - -Insertion loss: $L_{\text{Insertion}}$ [dB] = $L_{\text{Splitting}}$ [dB] + L_{Excess} [dB]
 - -Splitting matrix:

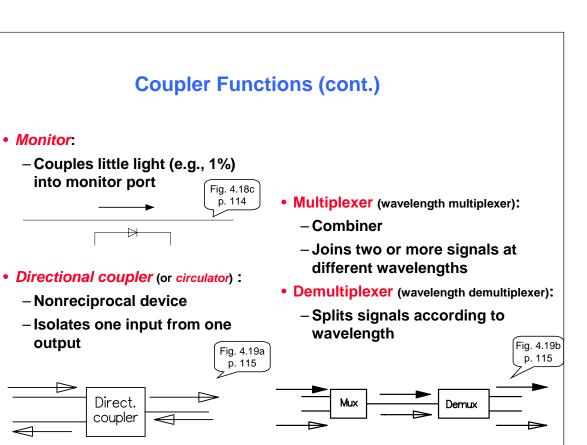
Losses		Output port	
		Α	В
Input	1	3.5 dB	3.5 dB
port	2	3.5 dB	3,5 dB


Coupler Functions

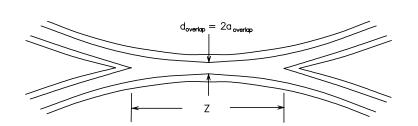
Splitter

- -Splits/divides power
- Standard splits for 2x2: 50:50, 90:10, 99:1
- Other custom ratios


Polarizing splitter


- Splits signals into two outputs
- Output polarizations orthogonal
- Single-mode fibers

Combiner


- Combines input channels into one
- Coherent combination possible with SM fiber
- Many (not all) passive devices are reciprocal
 - »Splitter sometimes used as combiner (but has splitting loss)

Couplers: 1. Fused Coupler

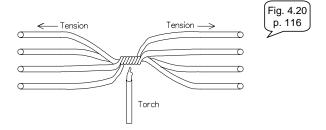
- Also called biconical taper coupler
- Light couples into other fibers through merged core

$$\Delta a = \frac{d_{\text{overlap}} - 2a}{2}$$

Power coupling:

$$\xi = \sqrt{F^2 \sin^2\left(\frac{CZ}{F}\right)}$$

• Control *∆a/a* and *Z*

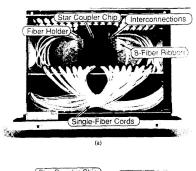

-Ex., make 50:50 coupler or 1500/1300 splitter

where

$$C = \sqrt{\frac{1}{1 + \left(\frac{234a^2}{\lambda^3}\right)\left(\frac{\Delta a}{a}\right)^2}}; \qquad C = \frac{21\lambda^{5/2}}{a^{7/2}}$$
Splice-35

Fig. 4.21 p. 116


Fused Coupler (cont)


- Coupling fraction controlled by amount of tension and time of heating.
 - Surprisingly, equal coupling can be achieved for all fibers with very low crosstalk and low insertion loss
 - >100 fibers formed into star coupler

Couplers: 2. Planar Lightwave Circuits (PLCs)

- Optical waveguides (rectangular) deposited in silicon
- Used to make passive and hybrid optical devices

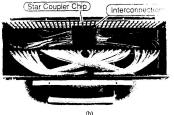
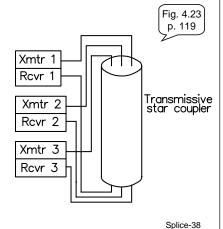



Fig. 3. Photographs of packaged (a) 64×64 and (b) 144×144 star coupler modules in bookshelf-type unit.

Couplers: 3. Mode-Mixing Rods

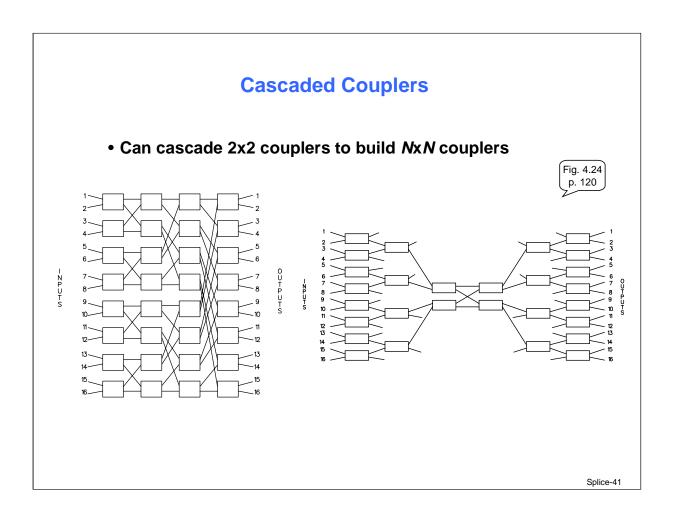
- Glass rod
 - -Few mm diameter
 - -Graded-index profile
 - -Length allows input light to fully expand
 - -Output end uniformly excited
- Concept works in transmissive configuration
 - -Make *reflective* system by
 - » Cutting in half,
 - » Adding reflecting surface,
 - » Moving outputs to same end as inputs

Couplers: Typical Specifications

- Losses
 - -Desired *splitting loss*

$$L_{split}[dB] = -10log(1/N) = 10log(N)$$

- -Undesired excess loss
 - »Typical excess losses: ~ 0.5 dB
- SM and MM couplers available
- See course website for sample spec sheets
- Couplers & WDM (E-Tek Dynamics) (www)


Couplers: Matrix Formulation

Can use matrix notation and phasors to represent SM coupler

$$\begin{bmatrix} \tilde{E}_{\text{out upper}} \\ \tilde{E}_{\text{out lower}} \end{bmatrix} = \tilde{\mathbf{S}} \begin{bmatrix} \tilde{E}_{\text{in upper}} \\ \tilde{E}_{\text{in lower}} \end{bmatrix}$$
$$\tilde{\mathbf{S}} = \begin{bmatrix} \sqrt{1 - \xi} & \sqrt{\xi} e^{j\pi/2} \\ \sqrt{\xi} e^{j\pi/2} & \sqrt{1 - \xi} \end{bmatrix} = \begin{bmatrix} \sqrt{1 - \xi} & j\sqrt{\xi} \\ j\sqrt{\xi} & \sqrt{1 - \xi} \end{bmatrix}$$

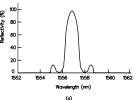
• Crossing inputs \rightarrow outputs have a π /2 phase shift relative to the noncrossing waves!!

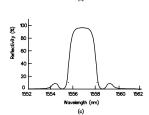
$$\tilde{\mathbf{S}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & e^{j\pi/2} \\ e^{j\pi/2} & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix}$$
 for 50:50 coupler

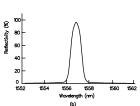

Splices, Connectors and Couplers: Summary

- Splices and connectors
 - Losses depend on...
 - »Fiber geometry (core ellipticity, corecladding concentricity, area mismatches, etc.)
 - »Characteristics of fiber (NA, index profile)
 - »Mechanical alignment (lateral and longi-tudinal displacement, angular misalignment)
 - »Power distribution in fiber (excitation conditions or mode conversion effects)
 - »Fiber end-face quality (scratches, presence of lips or hackles, parallelness of end faces)
 - Commercial connectors and splicing have acceptable losses (<1 dB)

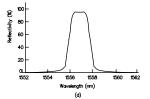
- Couplers
 - Combine and separate light
 - Primary parameters
 - »Insertion loss
 - »Splitting loss of coupler


Fiber Grating Devices

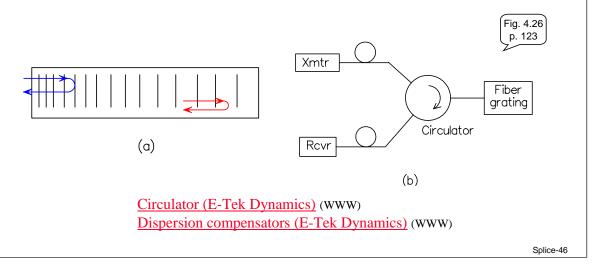

- Goal: inline optical filters with low insertion loss
- Applications
 - Add/drop filters for multiwavelength systems
 - Reflectors for amplifiers and fiber lasers
 - Reflectors for external-cavity lasers
 - Dispersion compensating devices
- Physical effect
 - High intensity UV can change n of glass (permanently)
 - Expose fiber to interference pattern to write "grating" in fiber core
 - » Use side exposure through "phase mask"
 - Transmission/reflection spectral properties depend on grating period and amplitude

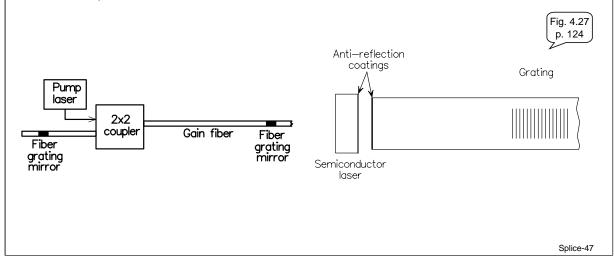

Grating Designs

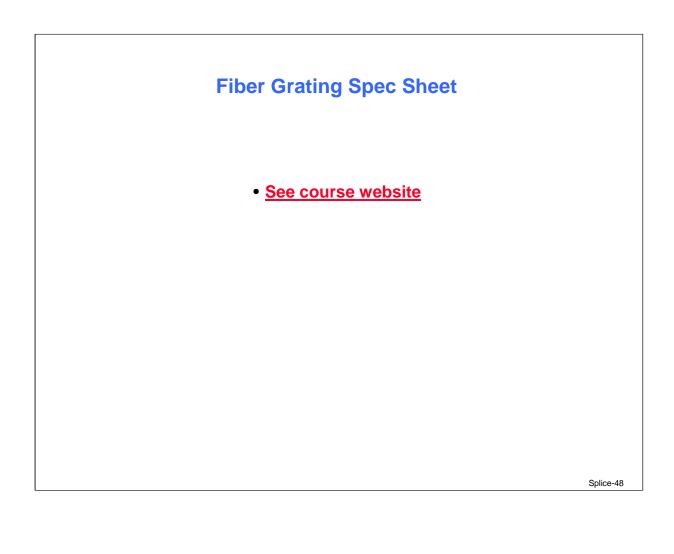
- Spectral distribution of reflectivity
 - (a) Period grating, equal amplitude
 - Peaked response, sidelobes
 - (b) Periodic grating, apodized amplitude
 - Peaked response, reduced sidelobes



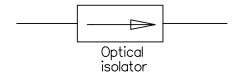
- (c) "Chirped" period, equal amplitude
 - Flat response, sidelobes
- (d) Chirped period, apodized amplitude
 - Flat response, reduced sidelobes

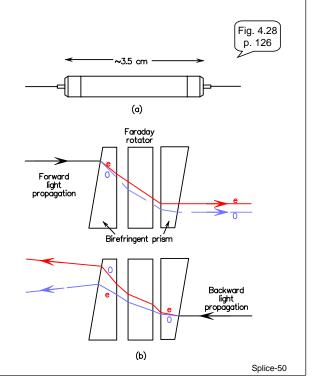



Fiber Gratings: Dispersion Compensation


- Aperiodic grating
- Short- λ reflect in regions of high spatial periodicity
- Design grating to "reverse" pulse-stretching effects of GVD dispersion in SM fibers

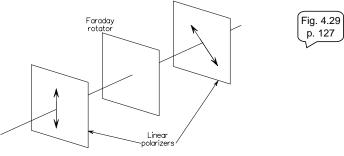
Fiber Gratings: Laser Reflectors


- High reflectivity at desired wavelength
 - -Left fiber laser with grating mirrors
 - -Right external cavity laser (long resonator length ensures small Δv)


Optical Isolators

- Ensure one-way light flow
- Return loss
 - -30 dB nominal
 - -60 dB premium device
- Applications
 - Isolate single-frequency lasers
 - Isolate optical amplifiers

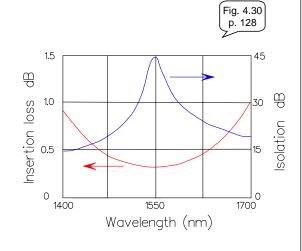
Optical Isolators: Principles Polarization-Independent Isolator


- Nonreciprocal device
- Collimating and focusing lenses not shown
- Birefringent wedge
 - Light polarized along one axis has one velocity
 - Light polarized along other axis has different velocity
 - Refraction angle at interface is different for two polarizations
- · Faraday rotator
 - Magnetic field present
 - Light polarization is rotated;
 amount is dependent on material,
 magnetic field strength, length of propagation

Optical Isolators: Principles Polarization-Dependent Isolator

- Wedges replaced by polarizers
- Forward:
 - Align input polarization with input polarizer (collimating and focussing lenses not shown)
 - Polarization axis rotated 45°
 (clockwise as seen from input)
 by rotator
 - Output aligns with output polarizer

- Backward:
 - Back light is polarized by rear polarizer at 45° from vertical
 - Polarization rotates 45° by rotator to horizontal orientation
 - Blocked by input polarizer (severe attenuation)


Optical Isolators: Specifications

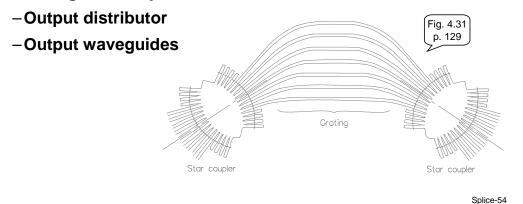
• Insertion Loss

$$L_{\text{insertion}} \text{ [dB]} = -10 \log \underbrace{\left(\frac{P_{\text{out}}}{P_{\text{in}}}\right)}_{\text{Forward transmissivity}}$$

Isolation

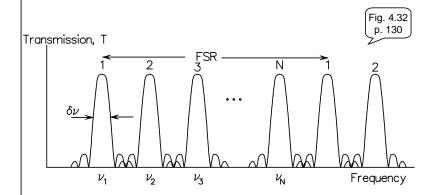
$$L_{\text{isolation}} \text{ [dB]} = -10 \log \left(\frac{P_{\text{back, out}}}{P_{\text{back, in}}} \right)$$
Reverse transmissivity

• Return loss


$$L_{\text{return}} \text{ [dB]} = -10 \log \left(\frac{P_{\text{reflected}}}{P_{\text{in}}} \right)$$
Reflectivity

Optical Isolators: Specifications

- Other specifications
 - Polarization-dependent loss (PDL): Maximum variation of insertion loss as input polarization state is changes over 180° for a polarization-independent device
 - Polarization mode dispersion (PMD): Difference in propagation times through isolator when input polarization is rotated through 180°
 - Power handling capacity: maximum optical power without any danger of injuring coatings or components
- See website for isolator specifications

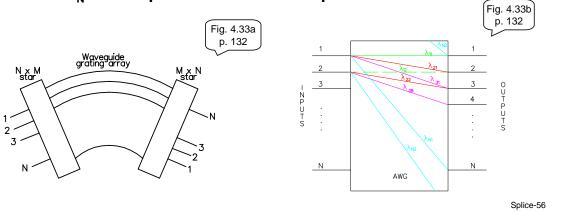

Arrayed-Waveguide Grating (AWG) Couplers

- Device that multiplexes and demultiplexes *N* signals at multiple wavelengths without a splitting loss
- Consists of...
 - -Input waveguide array
 - -Input distributor
 - -Waveguide array (each pathlength ΔI shorter than previous)

AWG Couplers

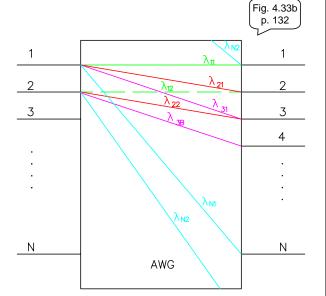
- Spectral transmission
- N separate responses
- δv = width of response for each channel
- Free spectral range = total spectrum covered = $N \delta v$
- Design to maximize *N*, FSR; choose *dl* for desired λ_1 , λ_2 , λ_3 ,... λ_N

$$FSR = \frac{c}{n\Delta l} = \frac{v}{q}$$


$$q = \frac{n\Delta l}{\lambda} = \frac{v}{FSR} \qquad (q \sim 60)$$

$$\delta v = \frac{FSR}{N} = \frac{v}{qN} = \frac{c}{q\lambda N}$$

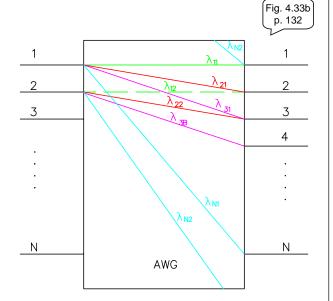
$$N = \frac{FSR}{\delta v} = \frac{v}{q\delta v} = \frac{c}{q\lambda \delta v}$$


AWG Couplers: MUX and DEMUX

- Physical layout; functional diagram (note reversal of output ports)
- One signal on each port...
 - $-\lambda_1$ in on input #1 comes out output #1
 - $\lambda_{\rm 2}$ in on input #2 comes out output #2
 - $-\lambda_{\text{N}}$ in on input #N comes out output #N

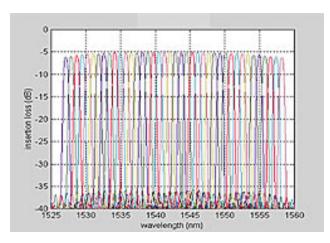
AWG Couplers: MUX and DEMUX (cont)

- Multiple signals on one input...
 - λ_{1} in on input #1 comes out #1
 - $-\lambda_2$ in on input #1 comes out #2
 - $-\lambda_N$ in on input #1 comes out #N
 - $-\lambda_1$ in on input #2 comes out #2
 - $-\lambda_2$ in on input #2 comes out #3
 - λ_3 in on input #2 comes out #4
 - λ_{N} in on input #1 comes out # N+1 = #1 (grating "wrap-around" property)
 - All N wavelengths in any input port will appear at outputs; one wavelength at each output ("wavelength demultiplexing")

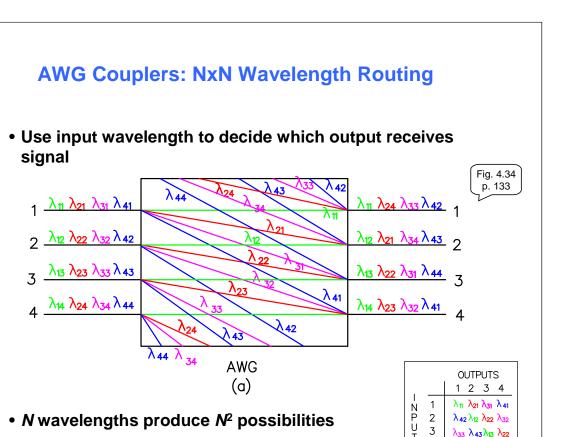


Note: Edge ports have higher losses; arrange so light comes in on a center port

AWG Couplers: MUX and DEMUX (cont)


- Device is reciprocal
- Run "backwards"
- λ₁ applied at "output" 1 appears at "input" 1
- λ_2 applied at "output" 2 appears at "input" 1
- λ₁ applied at "output" 1 appears at "input" 1
- All wavelengths appear at "input" port 1
- "Wavelength multiplexing"

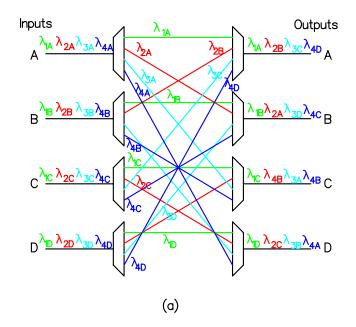
Note: Edge ports have higher losses; arrange so light comes out of center port

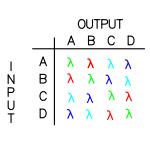


AWG Couplers: MUX and DEMUX (cont)

• Measured Response

- AWG (Microsystems)
- AWG (Lucent)

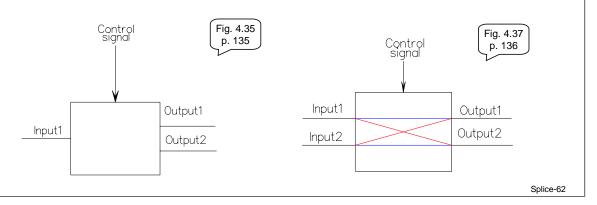



• *N* wavelengths produce N^2 possibilities

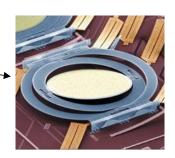
 $\lambda_{42}\,\lambda_{12}\;\lambda_{22}\;\lambda_{32}$ $\lambda_{33}~\lambda_{43}\lambda_{13}~\lambda_{22}$ $\lambda_{24}\ \lambda_{34}\ \lambda_{44}\ \lambda_{14}$ (b)

Wavelength Routing Concept

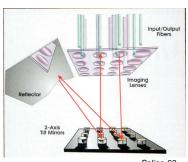
• Output exits determined by wavelength and input port



(b)

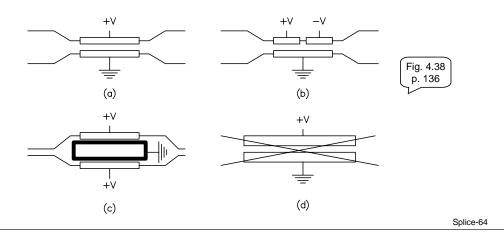

Optical Switches

- Switch optical path under electronic or optical control signal
- Simplest is 1 input and two outputs (left)
- Most common is 2x2 crossconnect switch (right)
 - -State #1: signals pass straight through ("bar state")
 - -State #2: signals cross ("cross state")
- NxN switch can connect any input to any output
- Switch properties: speed, crosstalk, insertion loss


Types of Switches

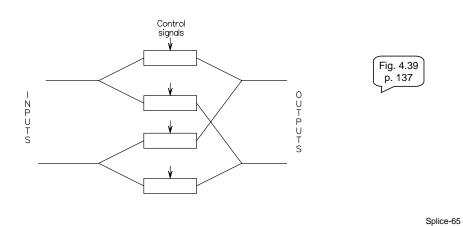
- Mechanical
 - -Deflect or move component
 - -Slow (ms)
- Thermo-optic
 - Change refractive index by localized heating
 - -Slow (~ms)
- Electro-optic
 - Change index of refraction by applied electric field
 - −Fast (<ps)

MEMS (micro-electro-mechanical system) mirror used to reflect light into different output ports



Splice-63

Fig. 4.36 p. 134


Electro-optic Switches

- Fast switches
- (a) Directional-coupler switch
- (b) Reversed delta-beta coupler
- (c) Balanced-bridge interferometric switch
- (d) Intersecting waveguide switch

Gate Switches

- Consists of splitters, gating elements (amplifiers or absorbers), combiners
- Problems with losses for large *N* (8x8 switch with amplifiers has been demonstrated)
- Can be fabricated in integrated-optic form

Optical Switching Vocabulary

- "Relational devices" Data flows through switches; switch setting is oblivious to data content ("data transparency")
- "Logic devices" Switch setting depends on data content
 - Ex., switch setting depends on destination address in data packet
- Switches (E-Tek Dynamics) (www)

More on switches forthcoming (Under Construction)

Summary

- Use splices for permanent connection; connectors for demountable connection
 - Losses depend on fiber properties (intrinsic losses) and fiber alignment (extrinsic losses)
 - -Losses ~0.1s dB
- Fiber components allow manipulation of light power (amplitude, phase, polarization, etc.)
 - -Splitters, combiners, circulators (directional couplers), multiplexers and demultiplexers, switches, polarization components (splitters, combiners, isolators)
 - Filters (Bragg gratings, stacked dielectric layers, Fabry-Perot mirrors)